Evaluating LiDAR Applications for Forest Vegetation Management # **Trevor Hobbs** Natural Resource Information Manager Huron-Manistee National Forests #### OUTLINE - Background A primer on LiDAR - Applications for forest inventory and vegetation management - Habitat Mapping for the American marten (Martes americana) - Mapping slopes, soils, and terrain-related data - Strategies for making LiDAR data products accessible and available for field work with AGOL # A PRIMER ON LIDAR #### LiDAR (Light Detection and Ranging) - Active sensor laser sends out light and sensor measures the time it takes for light to return - Penetrates forest canopy - Ideal for mapping forest density and canopy layers - Ideal for mapping large areas (1000's to tens of 1000's of acres) Image from VCGI Lidar http://vcgi.vermont.gov/lidar ## LIDAR AVAILABILITY IN REGION 9 #### https://viewer.nationalmap.gov/basic/ #### **Availability** - Several County and state datasets have been released to the public in recent months - Available via FTP download, stored in tiles #### LiDAR Quality Levels - **Level 1** Highest resolution (8 points/m²) - **Level 2** Moderate resolution (2 points/m²) - Level 3 Low resolution (0.5 points/ m^2) # A PRIMER ON LIDAR (Two main types of data delivered from LiDAR) # Digital Elevation Model # **Point Cloud** # A PRIMER ON LIDAR # Each point contains a number of different attributes... Terrain model with point cloud colored by Classification # Each point contains a number of different attributes... Terrain model with point cloud colored by Elevation # Each point contains a number of different attributes... Terrain model with point cloud colored by Intensity # INTERPRETING THE "POINT CLOUD"... Real life vs. point cloud (colored by intensity) People who understand Making a LiDAR how to work with raw project work for your LiDAR Data, and... organization is a **Planning** team effort! Contracting **Acquisition Data Quality** Using Data / **Review & Implementation Evaluation Point Cloud** Data Sharing / **Metrics & Field** Dissemination **Planning Field Work Modeling &** (collecting plot ...People who understand Mapping data) the natural resource (and know what questions to ask of the data) # APPLICATIONS FOR FOREST INVENTORY AND MAPPING LIDAR DATA FROM THE OLGA LAKE PROJECT AREA # APPLICATIONS FOR FOREST INVENTORY AND MAPPING LIDAR DATA FROM THE OLGA LAKE PROJECT AREA Some possible forest inventory data products using LiDAR - Canopy height / Canopy Hillshade - Canopy cover - Forest Inventory Metrics - Tree segmentation - Standing Dead Trees - Conifer/Deciduous Mapping ## DATA PROCESSING - LANDSCAPE STRATIFICATION Stratified Random Sampling Divide the project area into areas of similar height and density 9 classes total 5 sample plots in each ## DATA PROCESSING - LANDSCAPE STRATIFICATION Stratified Random Sampling Divide the project area into areas of similar height and density 9 classes total 5 sample plots in each (45 field plots) Forest-Wide Inventories with corresponding plot analysis... - 1. Measure all trees in a plot... - 2. Extract the LiDAR point cloud from the same plot - 3. Repeat for several plots across the area - 4. Develop statistical models that relate the point cloud to the field measurements - 5. Apply model to the whole area! #### FOREST-WIDE INVENTORY WITH AREA BASED APPROACH By laying out a series of ground plots across the LiDAR footprint, a wide variety of inventory metrics can be modeled... Basal Area Merchantable Volume Quadratic Mean Diameter Lorey's Height Trees Per Acre # Tree Height (meters) High: 28 Low:0 LiDAR Point Cloud Cross Section illustrating the difference between elevation and height Canopy Height Map with Semi-Transparent Hillshade Mapping Trees per Acre Across Wide Areas Mapping Standing Dead Trees Using LiDAR Intensity Data Many wetlands have standing dead trees, which make for a good "training" sample to identify other standing dead trees. #### Potential applications: - Habitat (Snag density) - Disease Inventory (Ash Trees) Mapping Standing Dead Trees Using LiDAR Intensity Data Mapping Conifer vs. Deciduous Using LiDAR Intensity Data (Leaf-on / Summer) Summer Data Collection → Leaves on the trees → Better canopy model → Detecting standing dead trees possible Winter Data Collection → Leaves NOT on the deciduous trees → Better for detecting deciduous vs. coniferous HABITAT MAPPING FOR THE AMERICAN MARTEN ## HABITAT MAPPING FOR THE AMERICAN MARTEN #### USING FUSION LIDAR SOFTWARE... Characterize point cloud within 30meter buffers around #### known marten GPS locations Characterize point cloud within 30meter buffers around ### random unoccupied locations STEPS... - 1. Normalize the points in each cloud to represent height above ground - 2. "Slice" each point cloud into 2-meter height intervals - 3. Run "Cloud Metrics" tool to determine the percent of LiDAR returns in each height strata - 4. Pool each strata from each plot into a population of samples - Compare populations (known vs. random) to determine if they are statistically different. #### Chosen Elevation Metric – LiDAR Return Proportion (at a given height strata)... Known Marten Locations vs. Random Unoccupied Locations- are they statistically different? Yes. And this is true for all strata, except for... Results of Student's T-Test to Evaluate Significant Differences between Random and Known Marten Location Elevation and Intensity Strata metrics **Bold P-values** indicate that particular strata is not significantly different from random chance | Elev Strata (meters) | 2-tailed, equal variance P-value | 2-tailed, unequal variance P-value | |--|----------------------------------|------------------------------------| | Elev strata (below 0.50) return proportion | 5.26E-03 | 5.28E-03 | | Elev strata (0.50 to 1.00) return proportion | 1.25E-08 | 1.55E-08 | | Elev strata (1.00 to 2.00) return proportion | 3.14E-16 | 4.98E-16 | | Elev strata (2.00 to 4.00) return proportion | 1.85E-20 | 5.29E-20 | | Elev strata (4.00 to 6.00) return proportion | 4.86E-20 | 1.02E-19 | | Elev strata (6.00 to 8.00) return proportion | 1.89E-11 | 2.29E-11 | | Elev strata (8.00 to 10.00) return proportion | 1.18E-03 | 1.19E-03 | | Elev strata (10.00 to 12.00) return proportion | 3.27E-01 | 3.27E-01 | | Elev strata (12.00 to 14.00) return proportion | 5.90E-07 | 6.00E-07 | | Elev strata (14.00 to 16.00) return proportion | 7.04E-21 | 7.04E-21 | | Elev strata (16.00 to 18.00) return proportion | 5.36E-36 | 5.48E-36 | | Elev strata (18.00 to 20.00) return proportion | 4.26E-35 | 6.20E-35 | | Elev strata (20.00 to 22.00) return proportion | 7.52E-04 | 7.52E-04 | | Elev strata (22.00 to 24.00) return proportion | 8.60E-10 | 8.60E-10 | | Elev strata (24.00 to 26.00) return proportion | 6.72E-24 | 4.48E-23 | | Elev strata (26.00 to 28.00) return proportion | 1.03E-14 | 2.83E-14 | | Elev strata (28.00 to 30.00) return proportion | 2.36E-07 | 3.00E-07 | Vertical Structure of Occupied Forests within Marten Home Range as Derived from Pooled LiDAR Cloud Metrics of 30-meter Circular Buffers Around Known Marten Locations (n=381) Vertical Structure of Occupied Forests within Marten Home Range as Derived from Pooled LiDAR Cloud Metrics of 30-meter Circular Buffers Around Known Marten Locations (n=381) Vertical Structure of Occupied Forests within Marten Home Range as Derived from Pooled LiDAR Cloud Metrics of 30-meter Circular Buffers Around Known Marten Locations (n=381) Vertical Structure of Occupied Forests within Marten Home Range as Derived from Pooled LiDAR Cloud Metrics of 30-meter Circular Buffers Around Known Marten Locations (n=381) Vertical Structure of Occupied Forests within Marten Home Range as Derived from Pooled LiDAR Cloud Metrics of 30-meter Circular Buffers Around Known Marten Locations (n=381) PROPORTION OF LIDAR RETURNS Example: Where does the 12-14 meter strata express the *interquartile range* of LiDAR return proportions typical of known marten habitat? 0 - not within IQ range 1 - within IQ range 0.5 1 1.5 Miles N Raster Calculator → Con(("raster" > 0.0436) & ("raster" < 0.0778),1,0) #### MAPPING SOILS AND TERRAIN-RELATED DATA #### TOPICS TO EXPLORE... - 1. Having access to LiDAR, especially in glaciated (or otherwise "subtle" terrain) improves... - Geomorphic interpretation - Existing map unit boundaries #### MAPPING SOILS AND TERRAIN-RELATED DATA #### TOPICS TO EXPLORE... - 1. Having access to LiDAR, especially in glaciated (or otherwise "subtle" terrain) improves... - Geomorphic Interpretation - Existing map unit boundaries - 2. Zonal statistics is a fundamental tool for map unit delineation... - Is higher resolution raster data better? Or a burden? - What steps can be taken to work with data more efficiently? # Existing Soil Map Unit Boundaries - Draft completed in the late 90s against 1:24K black and white aerial photo base - Mismatched units across contract boundaries - Unassigned map unit symbols - Units not capturing sufficient detail # Soils Mapping and Zonal Statistics with LiDAR Data Starting with basic terrain-related raster products... - Elevation - Slope - Aspect ## Soils Mapping and Zonal Statistics with LiDAR Data Starting with basic terrain-related raster products... - Elevation - Slope - Aspect - Other raster-based indices? ...And overlaying soil map unit polygons to summarize the distribution of cell values within the polygon | Step | Software | Tool / Command | Link to documentation | |------------------------------|----------|------------------------|--| | 1. Smooth DEM | SAGA | Gaussian Filter | http://www.saga-gis.org/saga_tool_doc/2.3.0/grid_filter_1.html | | 2. Generate Slope Raster | GDAL | gdal dem | http://www.gdal.org/gdaldem.html | | 3. Classify Slope Raster | SAGA | Classify | http://www.saga-gis.org/saga_tool_doc/2.2.1/grid_tools_15.html | | 4. Convert raster to integer | GDAL | gdal translate | http://www.gdal.org/gdal_translate.html | | 5. Sieve raster | GDAL | gdal sieve | http://www.gdal.org/gdal_sieve.html | | 6. Filter raster | SAGA | Majority Filter | http://www.saga-gis.org/saga_tool_doc/2.2.1/grid_filter_6.html | | 7. Convert raster to polygon | GDAL | gdal polygonize | http://www.gdal.org/gdal_polygonize.html | | 8. Smooth Polygons | GRASS | v.generalize.smooth | https://grass.osgeo.org/grass74/manuals/v.generalize.html | Just one of many free and open source GIS software packages excellent for terrain modeling applications... Red Relief Image Mapping Comprised of... - Topographic Positive Openness - Topographic Negative Openness - Slope Link to learn more... http://www.isprs.org /proceedings/XXXVII /congress/2 pdf/11 ThS-6/08.pdf ## Manistee River Loop Trail Middle Red hatch mark interval = 1/2 m kg ## A 1:10,000 Series for Recreation and Field Navigation - 2-foot contours (cartographically smoothed) - Semi-transparent hillshade - Forest height (above ground level) variable tint - Breaklines for open-water bodies - Updated stream delineation (Work in progress) ## Concluding Thoughts... - Integrating LiDAR into the NEPA project planning process - LiDAR as a tool for deeper engagement with the resources we are tasked with managing - It's not going to do the work for you, or replace field work- but it will allow you to answer more questions with greater accuracy